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Finite-size dynamics of inhibitory and excitatory interacting spiking neurons
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The dynamic mean-field approach we recently developed is extended to study the dynamics of population
emission rates/(t) for a finite network of coupled excitator§g) and inhibitory (I) integrate-and-firgIF)
neurons. The power spectrum gft) in an asynchronous state is computed and compared to simulations. We
calculate the interpopulations transfer functions and show how synaptic interaction modulates the otherwise
low-pass filter with resonances which go well beyond the filter's(aut v), allowing efficient information
transmission on very short time scales determined by spike transmission delays. The saddle-node instability of
the asynchronous state is studied and a simple exact dependence of the stability condition on the current-to-rate
gain functions is derived, by which self-couplingSE andll) decrease stability while mutual interacti¢al
andlE) favor stability.
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Realistic models of interacting spiking neurons must ulti-teracting IF neurons in noisy regimes, with a distribution
mately encompass multiple interacting modules, for whichof spike transmission delays and instantaneous synaptic
the intermodule and intramodule connectivity pattern anccurrents.
synaptic couplings define the architecture of interest in a spe- |n the diffusion approximatiofi7], the stochastic dynam-
cific setting. Even at the crude modeling level of integrate-ics of an IF neuron’s membrane potential is described by the

and-fire(IF) current-driven neurons with instantaneous syn- : N
aptic input, predicting the dynamical properties of multiple _Langevm equatioV=f(V)+u(V,)+a(V, I'(t), wheref(V)

5 .
!nteractjng neural pppulations i_s a diffjcult tgsk. [t has beerf E[he Ietaktz;ge' t]?"l:’ qnd(l\/,t) and“d (V'_t) arg/ctl?e ior;::"
increasingly recognized that noisy regimes, in which the colPUtions to the infinitesimal mean and variance/alue 1o the
lective firing of a population of neurons exhibits important afferent currentI'(t) is a white noise with zero mean and
fluctuations, provide a key for the description of biologically Unit variance. The associated Fokker-PlaER) equation
relevant dynamic phenomena, e.g., fast collective oscillaf8] for the probabilityp(v,t)dv of havingV(t) e [v,v+dv] is
tions with frequencies largely exceeding the single-neuron

firing rate [1-3]. The “diffusion approximation” has been atp:Lp:{— &U[f(v)+,u,(u,t)]+%a%az(v,t)}p_

widely adopted for the description of the noisy dynamics of

a single neuron, or a homogeneous population of IF neurong;he FP equation is complemented by three boundary condi-
a few attempts have dealt so far with multiple populations ofijons for (i) the spike emission whevi reaches a thresholél
interacting IF neurons. In this Brief Report, by exten_dmg anabsorbing barrier af), (i) the allowed range fov (reflect-
approach introduced ifd] to two self- and mutually inter- inq parrier inv,,,, possiblyv,— —), and(iii) the reset of
acting populations of excitatory and inhibitory neurons, we, 4, 5 yajueH after the emission of a spikéflow conser-
attempt a further step towards the analytical and quantitative ..o o realizations crossing, restarting their random
description of biologically interesting architectures. Beside§l\lalk from H) [1,4,9-13. The “pr(,)bability current” through

th_is generic interest, the approgch take_n here has_ SOME IMis the number of spikes emitted per unit time and per
plications on the problem of information transmission in neuron the population emission rate u(t)=

complex neural systeni$,6]. It is known that a network of 5
spiking neurons firing asynchronously can encode signal§1/2‘r (v,t)&up(v,t)|v:9. :
In the mean-fieldapproach for a population of IF neurons,

covering a frequency band extending well beyond the emis- I h th d o2 which
sion rate of the individual neurons; in the second part of the)N€ assumes all neurons share the samand o -, Whic

present paper, we briefly focus on the “input-output” proper-"9" depenzd on time through(t): u(v,t)=u(v,»(t),t) and
ties of the neural populations as linear systems characterize@ (U, =0 (v, »(1),1) [14]. The FP equation is then nonlin-
by suitable transfer functions: both the intramodule and in£ar: L=L(p). To solve it,p(v,t) can be expanded into the
termodule synaptic interactions produce resonances in tHéme-dependent eigenfunctiofigy} of L, L|y) =\s| ) with
frequency response, which select optimal bands for the infor€igenvalues.,, and the dynamics of the coefficiersigof the
mation transmission. The present work illustrates how ongxpansion ~can be computed aq12] a,=Aa,
can analytically put in relatively simple terms the expectedt "Zn@nid,¥n| ¢m), Where{y} are the eigenfunctions of the
role of synaptic couplings in shaping the signal-to-noiseadjoint operatol.* #L. In [4], we used the above equation
transmission properties. for a,, to derive an evolution equation feft) in closed form:
Before describing the results, we summarize the formal{i) “closing the loop” by expressing(t) in terms of{a,} and
ism, referring for details tg4], where we introduced a dy- {f.}, and singling out the static mod&,=0 anday=1, Lp
namic, mean-field “emission rate equation” describing the=0), to highlight the role of the static current-to-rate gain
time-dependent firing activity(t) of a finite number of in-  function ®(u,o) (providing the emission frequency of a

1539-3755/2004/16)/0529034)/$22.50 70 052903-1 ©2004 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW E0, 052903(2004)

neuron with stationary input current(ii) including finite-  taken into account, substituting in E@2) »(t—-49) with
size effects to describe populations with a finite nunief  [Jv,(t-6)py(5)ds [1,15].
neurons. Besides incoherent fluctuations.g., due to The spectral properties of the asynchronous states can be
quenched randomness in the neurons’ connectivity and/or teonveniently probed using the finitéfluctuations ofw(t),
external input, which are taken into account in?, finite N with no need of external oscillatory input. From K@), the
corrections arise becaugg for finite but largeN, the spiking  Fourier transform of the emission rate i (w)
activity wy(t) fluctuates around »(t):  wt)=wt) =p, (o) V(@) + Dy (@) vy(w) +Uy(w) (). Dyy(w) are the
+v(t)/Ny(t) = v(t) + 5(t), where y(t) is a white noise with i i i iZi
VP Y AUAN/AUN Y N transfer functions, in the frequency domain, characterizing
zero mean and unit variancg; and o® become stochastic, they— x transmission properties in the presence of recurrent
and so is the finitéd FP equation{1]; (i) furthermore, the and mutual interactions, and whét— o,
finite number of neurons has to be explicitly taken into ac-

count in the boundary condition expressing the conservation Dyy(@) = [Dy, + if - (ol - A) Cywlpy(w),  (3)
of the exact number of realizations crossifi@nd reappear- , .
ing atH [4]. The resulting “emission rate equation” is wherep,,(«w) is the Fourier transform of,(d). In general,
the widerp,(9) is, the more the high-frequency components
§=(A+CbN)z§+6i}N+ 1277, of the input signal are damped making the asynchronous

states more stablg,15. The endogenous noise is transmit-
ted by Ugfw)=1+f,-(iwl —A,) 1. The power spectrum

=0 +f-a+y, D P w)=|r(w)?is then
wherea i§ the vector of the expansion coefficients; the ele- "o "o
ments off aref,= —33,0 2(v,1)¢n(v,1)],=4 the elements of I[1 _Dyy(w)]ux(w)‘ZW + |ny(w)Uy(w)FT\lL
¢ are the coupling terms between théh mode and the sta- Py(w) = x 2y .
tionary onec,=(d, | ¢o), while C is the matrix of the cou- [1 = Dy@)][1 = Dyy()] = Dyy(@)Dyy( )]
pling terms between the nonstationary mode,, (4)

_<a”¢/”|¢T>’ Anm=Andhm N,M#0 everywhere. The ele- When the synaptic couplings vanish, and each population

ments ofy are evaluated at the reset potentigl(H,t). 7(t)  forms a set of independent realizations of the same process,

acts as an “endogenous” finite-size noise. Synaptic couplingsoth @, and G,y vanish andD,y(w)=0, so thatP,(w)

enter ®, C, and ¢, the latter two being O for uncoupled =|y (w)[21,o/N,. At first order in wu, |UJw)?=1

neurons. Fo 1T

In [4] we sketched the derivation of the exact rate equa-+ ZREUX'(.'“’I AJ .¢X]'. .

tion for multiple, infinite interacting populations. In what Py(w) is plotted in Fig. 1, .ShOW'T‘g a remarkable agree-

_ment between theory and simulations. The model neuron

follows, we first give the linearized equation for the asyn _ . . .
chronous state of coupled excitatory and inhibitory neuronéJsed IS t_he VLSI integrate-and-fire neur@AF) introduced
in [9] with vy,,=H=0 and a constant decay terfii(V)

including finite-si ffect d thei te th . X ; .
including finite-size effects and thet) compute the power =-p]. Collective behavior of interacting VIFs has been

spectrum ofwy, (ii) discuss the condition for stability, and S
(i) work out the inter-population(infinite-N) transfer shown to be S|m|l_ar to that of other IF neuroRg9]. The
figure shows a rich pattern of peaks for the stationary

functions. h tate. Th £10 Hz is due t
The local analysis is performed around the fixed pointsalSynC ronous state. fThe resonancesg zlsduelo
the small-noise firing of the excitatory neurons: random

determined in the limilN,— oo by the self-consistency equa- . NPT "
clusters of neurons starting from similar initial conditions

tion v,,=® , and a4,=0. From now onx is E for . . L "
%0= P v, 110) X evolve together in a quasideterministic way, providing

excitatory and for inhibitory, andw,(t) will denote the first- oI L
order displacement of the emission rate of the population quas[perlodlc bumpg of acuwty at the same frequency as
the single neuron firing rate, given by Ny2# [4,5,16.

from the fixed pointy,q (subscriptN will be omitted. The The 10 Hz resonance iPe(w) is “transmitted” toP,(w), as

lineariz mission rat tion is then . . .
earized emission rate equation is the discussed below. Peaks at higher frequenaiesmn/ § are
Lo = Lo - due to the transmission delayg, and as such are a mani-
a(t) = Aa(t) + 2 Cayy(t = 9) + (), festation of the interaction among neurons: in the case

v shown, such resonances are merged because of the “inter-
. ference” between the modes of the two populations.
p(t) = > (I))'(yvy(t— o) +f, -alt) + n(t), (2) When asynchronous states get destabilized, the network
y=E|l can jump to different attractors, including oscillatory states

. - ) o via Hopf-like bifurcations[2]. In what follows, we concen-
whered} = g,/ dvy, Coy=(d, | Pxo) 7(1) is the finite-size  trate on the saddle-node bifurcation occurring when the real
white noise with zero mean and variangg/N,, and all the  poles of the Laplace transform(s) of u,(t) cross the imagi-
constant terms\,, C,,, . ¥y, andf, are evaluated at the nary axis. The poles ofy(s) are the solutions off1
fixed pointwy. In Eq.(2), only one spike transmission delay —D,(s)][1-D,,(s)]-D,y(s)D,(s)=0, wherew— —is in Eq.
dis considered. In what follows, a distributign, () of de-  (3) to getD,(s). The bifurcation point is found locating the
lays in the transmission of spikes from populatipmo x is  leading(real) pole in the neighborhood of the origin in the
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FIG. 2. Theoretical predictions from E) for Tg, (T\g). Left

FIG. 1. Power spectr®,(w) for coupled excitatory and inhibi- panel: [Tg|? for varying relative weightsX of the recurrent and
tory populations in an asynchronous state: theory vs simulations2xternal excitatory inputequivalent to changindee for fixed vgo).
The network is composed Mz=1600 excitatory and\,=400 in-  Right panel{Tg|? for varying self-coupling);, and fixedr,o. J;, are
hibitory VIF (see text neurons firing on average ag,=10 Hz and ~ measured in units of.
v0=20 Hz. The synaptic conductances are constdgt=0.005,
Jg=-0.0051,J,=0.028, and); =-0.01. All spikes are transmitted Figure 2 showgT,,(w)[? from Eq. (6) for varying inten-
with a delays=2 ms. Excitatory neurons are in a low-noise regime: sities of the recurrent-y interaction, with parameters chosen
(f+u)/0?=18.2>1, while the inhibitory ones are in a noisy regime such thaty, is the same for all cases. The population trans-
with low (f+u)/o?=0.6. Dotted lines are the estimated power fer functions are low-pass filters, modulated by resonances
spectra from a simulation lasting 10 min: gray strips are their stanrelated both to the self-interaction and to the amount of fluc-
dard errors. Thick solid and dashed lines are, respecti¥®t»)  tuations in the neural activity. The left panel in Fig. 2 shows
and P|((1)) from Eq(4) the first 256 pairS of eigenmodes are Used.TEI: the exc|tatory populat|0n is in a low-noise reg”'ne, which
Solid and dashed .hor.izontal lines 9orre§poné’;@0):vX0/Nx. The  shows up in the lows modulation(w ~ vgo=10 H2); the lat-
membrane potential is measured in unitséof ter would correspond to a “diffusion” ripple iRg(w), which
complex s plane, where the following expression holds: is actually obscured by the overwhelming peak aroand
ny(s):q)),(y-"(fx'Ax_lexy_(I);(y<6>)S+ O(s2). (&) is the aver- ~ VEO du_e to_the finite-size effects, analogous to the_one ap-
age transmission delay. The real pole can be computed frofcarnng in Fig. 1._For_ the uncoupl_ed Ca@ez_’“E/'“e“_o)’
the resulting linear equatiomsy > (1 -®.g)(1—-®/) - b /.. the only m_odulatlon is the lows rlpple, W_hlle more Qnd_
The stability boundary isy=0 so that the asynchronous state more prominent pegks appear for increasing s:ezlf-excﬁaﬂon,
will be stable with respect to the saddle-node bifurcations iftt @~ 27n/4 [imaginary parts of the>-related *transmis-

oo sion” poles ofvg(s) [4]]. Then=0 (real) pole contributes the
|| P (5) greatest power t6T¢,(0)|2. [T\g|? is shown in the right panel.
1+|®)| The inhibitory population is in a noisy regime, and ripples
, , ) o around ;=20 Hz do not appear: the uncoupled network
(P =0 and®,=0 because increasing inhibition decreasesyoy|d act as a pure low-pass filter with a cutigg. Trans-
the emission ratgFrom the exact condition E¢S) it clearly  pission peaks are now shifted @~ (2n+1)7/26.
emerges that inc_rgasing _the excitator_y-inhibitory intergction The coupling-dependent resonances endow the population
widens the stability region Rg<0 (in agreement with \ih nontrivial transmission properties well beyond the low-
[2,17)), while high self-couplings favor instability. If one of has5 cyt. In particular, this implies that the population can
the mutual interactions vanishes, the exact stability conditionact o its input on time scales much shorter than the single-
for the excitatory population is obtaingd]. neuron analysis might suggest.

The ?ran_sfer properties of a pc_)pulat@on _of neurgnsan For w—s o, |-|—yx| > const, argT,,) —0, as known from
be studied in a feed-forward configuration in which the OUt'previous studieg19], for periodic modulation of both the

put of the systemuy(t) results as the “processing” of the \oan and the variance of the input current, which applies in
input »,(t) in the absence of feedba¢l,(w)=0]. We ne-  he case shown. We also checked that upon modulating only
glect the endogenous noise, assunfiyg- =, and the trans-  tha mean current the limitT,] — 1/\w) [5,18 is recovered.
fer functionTy,(«w) is Without attempting an extensive coverage of related
v(w)  Dy(w) works, we summari_ze beloyv some relevant prgvipu_s results

Tyw) =~ (@ 1-Dua)’ (6)  on the analysis of interacting excitatory and inhibitory IF

X vy neurons, and then list the main features characterizing the

The denominator is an expression of the self-interactionpresent work. Referendd.0] reports a detailed analysis for
which makesT,(w) different in principle from the un- the dynamics of mean emission rates(aflaptive leaky IF
coupled case discussed|[i,18,19. neurons, for the case of negligible noise in the afferent cur-

Ple<1+
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rents, with an emphasis on the spectrum of characteristigiously scattered results on quasideterministic and noisy re-
relaxation times towards a supposedly stable asynchronoggmes, new contributions of the present paper include ex-
state; the restriction of the present analysis to the almosended treatment of the finite-size effects, which allows a
deterministic caséwithout adaptatiopis ch_sistent with the very detailed description of the power spectrumv@ivith an

results of[10]. The authors of17], restricting also to the oy celient agreement with simulations also for low frequen-

quasideterministic case, and for the “quadratic” IF neuron,.; ; e :
work out in detail the stability conditions of the asynchro- tieg and its use as a self-stimulation of the network to study

nous state; as far as the dependence on the synaptic cottl}glhe frequency response of the system; an emphasis is put on

plings is concerned, the stability condition derivedi] for e validity of the approach for a wide class of IF neurons. In

the saddle-node instability is consistent with the general conParticular, the dependence of the stability condit{&h on
dition (5). In [2], the treatment of two coupled populations of the synaptic couplings, the general expressi@)sand (4)
leaky IF neurons covers both the noisy and noiseless castgr the transfer functions, and the power spectrum, with the
finite-size effects are incorporated as a stochastic modulatioassociated pattern of resonances, do not depend on the de-
of the mean afferent current; through an extension of thdails of the IF model, including conductance-based input.
theory developed iifl], the repertoire of available collective The dependence of the saddle-node stability condition on
states is exposed via numerical analysis, by choosing suitabtee synaptic couplings was derived analytically in the form
sections of the system’s phase space, and tracing the stabiligt simple expressions involving the current-to-rate gain func-
boundaries separating the various regimes of collective agions. This is particularly interesting in view of recent re-
tivity, for which the relevant quantitie®.g., the frequency of ~ search showing that the gain function of IF neurons fits well
collective oscillationgare extracted. For a simplified archi- n vitro experimental data for the firing of pyramidal neurons
tecture, the high-frequency resonances in the power spectruith noisy input current$20].

of the collective activity are shown to be well described by

the finite-size theory. This work has been supported by the ALAVLSI EU Grant

Besides providing, we believe, a unified treatment of preNo. IST-2001-38099.
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