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The dynamic mean-field approach we recently developed is extended to study the dynamics of population
emission ratesnstd for a finite network of coupled excitatorysEd and inhibitory sId integrate-and-fire(IF)
neurons. The power spectrum ofnstd in an asynchronous state is computed and compared to simulations. We
calculate the interpopulations transfer functions and show how synaptic interaction modulates the otherwise
low-pass filter with resonances which go well beyond the filter’s cutsv,nd, allowing efficient information
transmission on very short time scales determined by spike transmission delays. The saddle-node instability of
the asynchronous state is studied and a simple exact dependence of the stability condition on the current-to-rate
gain functions is derived, by which self-couplings(EE and II ) decrease stability while mutual interaction(EI
and IE) favor stability.
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Realistic models of interacting spiking neurons must ulti-
mately encompass multiple interacting modules, for which
the intermodule and intramodule connectivity pattern and
synaptic couplings define the architecture of interest in a spe-
cific setting. Even at the crude modeling level of integrate-
and-fire(IF) current-driven neurons with instantaneous syn-
aptic input, predicting the dynamical properties of multiple
interacting neural populations is a difficult task. It has been
increasingly recognized that noisy regimes, in which the col-
lective firing of a population of neurons exhibits important
fluctuations, provide a key for the description of biologically
relevant dynamic phenomena, e.g., fast collective oscilla-
tions with frequencies largely exceeding the single-neuron
firing rate [1–3]. The “diffusion approximation” has been
widely adopted for the description of the noisy dynamics of
a single neuron, or a homogeneous population of IF neurons;
a few attempts have dealt so far with multiple populations of
interacting IF neurons. In this Brief Report, by extending an
approach introduced in[4] to two self- and mutually inter-
acting populations of excitatory and inhibitory neurons, we
attempt a further step towards the analytical and quantitative
description of biologically interesting architectures. Besides
this generic interest, the approach taken here has some im-
plications on the problem of information transmission in
complex neural systems[5,6]. It is known that a network of
spiking neurons firing asynchronously can encode signals
covering a frequency band extending well beyond the emis-
sion rate of the individual neurons; in the second part of the
present paper, we briefly focus on the “input-output” proper-
ties of the neural populations as linear systems characterized
by suitable transfer functions: both the intramodule and in-
termodule synaptic interactions produce resonances in the
frequency response, which select optimal bands for the infor-
mation transmission. The present work illustrates how one
can analytically put in relatively simple terms the expected
role of synaptic couplings in shaping the signal-to-noise
transmission properties.

Before describing the results, we summarize the formal-
ism, referring for details to[4], where we introduced a dy-
namic, mean-field “emission rate equation” describing the
time-dependent firing activitynstd of a finite number of in-

teracting IF neurons in noisy regimes, with a distribution
of spike transmission delays and instantaneous synaptic
currents.

In the diffusion approximation[7], the stochastic dynam-
ics of an IF neuron’s membrane potential is described by the

Langevin equationV̇= fsVd+msV,td+ssV,tdGstd, wherefsVd
is the leakage term, andmsV,td ands 2sV,td are the contri-
butions to the infinitesimal mean and variance ofV due to the
afferent current.Gstd is a white noise with zero mean and
unit variance. The associated Fokker-Planck(FP) equation
[8] for the probabilitypsv ,tddv of havingVstdP fv ,v+dvg is

]tp = Lp = h− ]vffsvd + msv,tdg + 1
2] v

2s2sv,tdjp.

The FP equation is complemented by three boundary condi-
tions for (i) the spike emission whenV reaches a thresholdu
(absorbing barrier atu), (ii ) the allowed range forV (reflect-
ing barrier invmin, possiblyvmin→−`), and(iii ) the reset of
V to a valueH after the emission of a spike(“flow conser-
vation” of realizations crossingu, restarting their random
walk from H) [1,4,9–13]. The “probability current” through
u is the number of spikes emitted per unit time and per
neuron, the population emission rate nstd= u
−1/2s 2sv ,td]vpsv ,tduv=u.

In themean-fieldapproach for a population of IF neurons,
one assumes all neurons share the samem and s 2, which
now depend on time throughnstd: msv ,td=m(v ,nstd ,t) and
s 2sv ,td=s 2(v ,nstd ,t) [14]. The FP equation is then nonlin-
ear: L=Lspd. To solve it, psv ,td can be expanded into the
time-dependent eigenfunctionshfnj of L, Lufnl=lnufnl with
eigenvaluesln, and the dynamics of the coefficientsan of the
expansion can be computed as[12] ȧn=lnan
+ ṅomamk]ncnufml, wherehcnj are the eigenfunctions of the
adjoint operatorL+ÞL. In [4], we used the above equation
for an to derive an evolution equation fornstd in closed form:
(i) “closing the loop” by expressingnstd in terms ofhanj and
hfnj, and singling out the static mode(l0=0 anda0=1, Lp
=0), to highlight the role of the static current-to-rate gain
function Fsm ,sd (providing the emission frequency of a
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neuron with stationary input current); (ii ) including finite-
size effects to describe populations with a finite numberN of
neurons. Besides incoherent fluctuations(e.g., due to
quenched randomness in the neurons’ connectivity and/or to
external input), which are taken into account ins 2, finite N
corrections arise because(i) for finite but largeN, the spiking
activity nNstd fluctuates around nstd: nNstd.nstd
+Înstd /Ngstd;nstd+hstd, wheregstd is a white noise with
zero mean and unit variance;m and s2 become stochastic,
and so is the finite-N FP equation[1]; (ii ) furthermore, the
finite number of neurons has to be explicitly taken into ac-
count in the boundary condition expressing the conservation
of the exact number of realizations crossingu and reappear-
ing at H [4]. The resulting “emission rate equation” is

aẆ = sL + CṅNdaW + cWṅN + cW h,

nN = F + fW ·aW + h, s1d

whereaW is the vector of the expansion coefficients; the ele-

ments offW are fn= u− 1
2]vs 2sv ,tdfnsv ,tduv=u; the elements of

cW are the coupling terms between thenth mode and the sta-
tionary onecn=k]ncnuf0l, while C is the matrix of the cou-
pling terms between the nonstationary modesCnm
=k]ncnufml; Lnm=lndnm; n,mÞ0 everywhere. The ele-

ments ofcW are evaluated at the reset potential,cnsH ,td. hstd
acts as an “endogenous” finite-size noise. Synaptic couplings
enter F, C, and cW, the latter two being 0 for uncoupled
neurons.

In [4] we sketched the derivation of the exact rate equa-
tion for multiple, infinite interacting populations. In what
follows, we first give the linearized equation for the asyn-
chronous state of coupled excitatory and inhibitory neurons
including finite-size effects and then(i) compute the power
spectrum ofnN, (ii ) discuss the condition for stability, and
(iii ) work out the inter-population(infinite-N) transfer
functions.

The local analysis is performed around the fixed points
determined in the limitNx→` by the self-consistency equa-
tion nx0=FxsnE0,nI0d and aWx=0. From now on,x is E for
excitatory andI for inhibitory, andnxstd will denote the first-
order displacement of the emission rate of the populationx
from the fixed pointnx0 (subscriptN will be omitted). The
linearized emission rate equation is then

aẆxstd = LxaWxstd + o
y=E,I

cWxyṅyst − dd + cW xhxstd,

nxstd = o
y=E,I

Fxy8 nyst − dd + fWx ·aWxstd + hxstd, s2d

whereFxy8 ;]Fx/]ny, cWxy=k]ny
cW xuFx0l hxstd is the finite-size

white noise with zero mean and variancenx0/Nx, and all the

constant termsLx, cWxy, cW x, Fxy8 , and fWx are evaluated at the
fixed pointnx0. In Eq. (2), only one spike transmission delay
d is considered. In what follows, a distributionrxysdd of de-
lays in the transmission of spikes from populationy to x is

taken into account, substituting in Eq.(2) nyst−dd with
e0

`nyst−ddrxysdddd [1,15].
The spectral properties of the asynchronous states can be

conveniently probed using the finite-N fluctuations ofnxstd,
with no need of external oscillatory input. From Eq.(2), the
Fourier transform of the emission rate isnxsvd
=Dxxsvdnxsvd+Dxysvdnysvd+Uxsvdhxsvd. Dxysvd are the
transfer functions, in the frequency domain, characterizing
they→x transmission properties in the presence of recurrent
and mutual interactions, and whenNx→`,

Dxysvd = fFxy8 + i fWx · sivI − Lxd−1cWxyvgrxysvd, s3d

whererxysvd is the Fourier transform ofrxysdd. In general,
the widerrxysdd is, the more the high-frequency components
of the input signal are damped making the asynchronous
states more stable[1,15]. The endogenous noise is transmit-

ted by Uxsvd=1+fWx·sivI −Lxd−1cW x. The power spectrum
Pxsvd= unxsvdu2 is then

Pxsvd =

uf1 − DyysvdgUxsvdu2
nx0

Nx
+ uDxysvdUysvdu2

ny0

Ny

uf1 − Dxxsvdgf1 − Dyysvdg − DxysvdDyxsvdu2
.

s4d

When the synaptic couplings vanish, and each population
forms a set of independent realizations of the same process,
both Fxy8 and cWxy vanish andDxysvd=0, so that Pxsvd
= uUxsvdu2nx0/Nx. At first order in nx, uUxsvdu2=1

+2ReffWx·sivI −Lxd−1cW xg.
Pxsvd is plotted in Fig. 1, showing a remarkable agree-

ment between theory and simulations. The model neuron
used is the VLSI integrate-and-fire neuron(VIF) introduced
in [9] with vmin=H=0 and a constant decay term[fsVd
=−bg. Collective behavior of interacting VIFs has been
shown to be similar to that of other IF neuronsf4,9g. The
figure shows a rich pattern of peaks for the stationary
asynchronous state. The resonance atnE0=10 Hz is due to
the small-noise firing of the excitatory neurons: random
clusters of neurons starting from similar initial conditions
evolve together in a quasideterministic way, providing
quasiperiodic bumps of activity at the same frequency as
the single neuron firing rate, given by Imln/2p f4,5,16g.
The 10 Hz resonance inPEsvd is “transmitted” toPIsvd, as
discussed below. Peaks at higher frequenciesv,pn/d are
due to the transmission delaysdxy, and as such are a mani-
festation of the interaction among neurons: in the case
shown, such resonances are merged because of the “inter-
ference” between the modes of the two populations.

When asynchronous states get destabilized, the network
can jump to different attractors, including oscillatory states
via Hopf-like bifurcations[2]. In what follows, we concen-
trate on the saddle-node bifurcation occurring when the real
poles of the Laplace transformnxssd of nxstd cross the imagi-
nary axis. The poles ofnxssd are the solutions off1
−Dxxssdgf1−Dyyssdg−DxyssdDyxssd=0, wherev→−is in Eq.
(3) to getDxyssd. The bifurcation point is found locating the
leading(real) pole in the neighborhood of the origin in the
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complex s plane, where the following expression holds:
Dxyssd=Fxy8 +sfWx·Lx

−1cWxy−Fxy8 kdlds+Oss2d. kdl is the aver-
age transmission delay. The real pole can be computed from
the resulting linear equation:s0~ s1−FEE8 ds1−FII8 d−FEI8 FIE8 .
The stability boundary iss0=0 so that the asynchronous state
will be stable with respect to the saddle-node bifurcations if

FEE8 , 1 +
uFEI8 uFIE8

1 + uFII8 u
. s5d

(FxI8 ø0 andFxE8 ù0 because increasing inhibition decreases
the emission rate.) From the exact condition Eq.(5) it clearly
emerges that increasing the excitatory-inhibitory interaction
widens the stability region Res0,0 (in agreement with
[2,17]), while high self-couplings favor instability. If one of
the mutual interactions vanishes, the exact stability condition
for the excitatory population is obtained[4].

The transfer properties of a population of neuronsy can
be studied in a feed-forward configuration in which the out-
put of the systemnystd results as the “processing” of the
input nxstd in the absence of feedbackfDxysvd=0g. We ne-
glect the endogenous noise, assumingNy→`, and the trans-
fer functionTyxsvd is

Tyxsvd ;
nysvd
nxsvd

=
Dyxsvd

1 − Dyysvd
. s6d

The denominator is an expression of the self-interaction,
which makesTyxsvd different in principle from the un-
coupled case discussed in[5,18,19].

Figure 2 showsuTyxsvdu2 from Eq. (6) for varying inten-
sities of the recurrenty-y interaction, with parameters chosen
such thatny0 is the same for all cases. The population trans-
fer functions are low-pass filters, modulated by resonances
related both to the self-interaction and to the amount of fluc-
tuations in the neural activity. The left panel in Fig. 2 shows
TEI: the excitatory population is in a low-noise regime, which
shows up in the low-v modulationsv,nE0=10 Hzd; the lat-
ter would correspond to a “diffusion” ripple inPEsvd, which
is actually obscured by the overwhelming peak aroundl
,nE0 due to the finite-size effects, analogous to the one ap-
pearing in Fig. 1. For the uncoupled casesX;mE/mext=0d,
the only modulation is the low-v ripple, while more and
more prominent peaks appear for increasing self-excitation,
at v,2pn/d [imaginary parts of thed-related “transmis-
sion” poles ofnEssd [4]]. Then=0 (real) pole contributes the
greatest power touTEIs0du2. uTIEu2 is shown in the right panel.
The inhibitory population is in a noisy regime, and ripples
around nI0=20 Hz do not appear: the uncoupled network
would act as a pure low-pass filter with a cut atnI0. Trans-
mission peaks are now shifted tov,s2n+1dp /2d.

The coupling-dependent resonances endow the population
with nontrivial transmission properties well beyond the low-
pass cut. In particular, this implies that the population can
react to its input on time scales much shorter than the single-
neuron analysis might suggest.

For v→`, uTyxu →const, argsTyxd→0, as known from
previous studies[19], for periodic modulation of both the
mean and the variance of the input current, which applies in
the case shown. We also checked that upon modulating only
the mean current the limitsuTyxu→1/Îvd [5,18] is recovered.

Without attempting an extensive coverage of related
works, we summarize below some relevant previous results
on the analysis of interacting excitatory and inhibitory IF
neurons, and then list the main features characterizing the
present work. Reference[10] reports a detailed analysis for
the dynamics of mean emission rates of(adaptive) leaky IF
neurons, for the case of negligible noise in the afferent cur-

FIG. 1. Power spectraPxsvd for coupled excitatory and inhibi-
tory populations in an asynchronous state: theory vs simulations.
The network is composed ofNE=1600 excitatory andNI =400 in-
hibitory VIF (see text) neurons firing on average atnE0=10 Hz and
nI0=20 Hz. The synaptic conductances are constant:JEE=0.005,
JEI=−0.0051,JIE=0.028, andJII =−0.01. All spikes are transmitted
with a delayd=2 ms. Excitatory neurons are in a low-noise regime:
sf +md /s2=18.2@1, while the inhibitory ones are in a noisy regime
with low sf +md /s 2=0.6. Dotted lines are the estimated power
spectra from a simulation lasting 10 min: gray strips are their stan-
dard errors. Thick solid and dashed lines are, respectively,PEsvd
andPIsvd from Eq. (4): the first 256 pairs of eigenmodes are used.
Solid and dashed horizontal lines correspond toPxs`d=nx0/Nx. The
membrane potential is measured in units ofu.

FIG. 2. Theoretical predictions from Eq.(6) for TEI sTIEd. Left
panel: uTEIu2 for varying relative weightsX of the recurrent and
external excitatory input(equivalent to changingJEE for fixed nE0).
Right panel:uTIEu2 for varying self-couplingJII and fixednI0. JII are
measured in units ofu.
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rents, with an emphasis on the spectrum of characteristic
relaxation times towards a supposedly stable asynchronous
state; the restriction of the present analysis to the almost
deterministic case(without adaptation) is consistent with the
results of[10]. The authors of[17], restricting also to the
quasideterministic case, and for the “quadratic” IF neuron,
work out in detail the stability conditions of the asynchro-
nous state; as far as the dependence on the synaptic cou-
plings is concerned, the stability condition derived in[17] for
the saddle-node instability is consistent with the general con-
dition (5). In [2], the treatment of two coupled populations of
leaky IF neurons covers both the noisy and noiseless case;
finite-size effects are incorporated as a stochastic modulation
of the mean afferent current; through an extension of the
theory developed in[1], the repertoire of available collective
states is exposed via numerical analysis, by choosing suitable
sections of the system’s phase space, and tracing the stability
boundaries separating the various regimes of collective ac-
tivity, for which the relevant quantities(e.g., the frequency of
collective oscillations) are extracted. For a simplified archi-
tecture, the high-frequency resonances in the power spectrum
of the collective activity are shown to be well described by
the finite-size theory.

Besides providing, we believe, a unified treatment of pre-

viously scattered results on quasideterministic and noisy re-
gimes, new contributions of the present paper include ex-
tended treatment of the finite-size effects, which allows a
very detailed description of the power spectrum ofn (with an
excellent agreement with simulations also for low frequen-
cies) and its use as a self-stimulation of the network to study
the frequency response of the system; an emphasis is put on
the validity of the approach for a wide class of IF neurons. In
particular, the dependence of the stability condition(5) on
the synaptic couplings, the general expressions(3) and (4)
for the transfer functions, and the power spectrum, with the
associated pattern of resonances, do not depend on the de-
tails of the IF model, including conductance-based input.

The dependence of the saddle-node stability condition on
the synaptic couplings was derived analytically in the form
of simple expressions involving the current-to-rate gain func-
tions. This is particularly interesting in view of recent re-
search showing that the gain function of IF neurons fits well
in vitro experimental data for the firing of pyramidal neurons
with noisy input currents[20].
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